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STUDY TO DETERMINE THE INFLUENCE
OF WELD POROSITY ON THE INTEGRITY
OF MARINE STRUCTURES

by

William J. Walsh, Brian N. Leis and J. Y. Yung

1. INTRODUCTION

The objective of this study is to obtain a better understanding
of the influence of weld porosity on the integrity ot marine structures.
Understanding the effects of porosity on the mechanical properties of
weldments is important for the safe design of welded marine structures.
Information on the porosity effects for a weldment would be useful in
specifying welding processes and procedures. The expected service condi-
tions of a weld could dictate the amount of porosity allowed. A welding
process which would be expected to result in porosity levels corresponding
to that allowable amount could be rationally determined and specified.
The inspection and maintenance of welded structures would also benefit
from a refined understanding of the detrimental effects of various sizes,
shapes, and patterns of porosity.

Previous investigations on the effects of weld porosity on
integrity of structures indicate that there is very little influence of
porosity upon brittle fracture properties[l]. However, porosity has been
shown to influence the fatigue properties of we]ds[1'7]. The motivation
for the present study comes from the potential of modern fatigue technol-
ogy and fracture mechanics principles to analytically predict the fatigue
performance of weldments. The literature provides sufficient information
on the dependence of fatique performance on parameters such as size of
pores, number of pores, pore shape and pattern. These parameters will be
incorporated into a fatigue life estimation model based upon fatigue and
fracture concepts.




2. DISCUSSION OF THE PROBLEM

2.1 Limits of Concern

The results of most of the studies examining the effects of
porosity conclude that porosity does not effect the mechanical properties
of a weldment unless the amount of porosity is extremely 1arge[1-s].
Regarding fatigue, the most critical location for a weid is generally the
weld toe. This abrupt change in geometry from the weld metal reinforce-
ment to the base metal results in a stress concentration and acts as a
fatigue crack initiation site. Pores are, by comparison, much less severe
stress concentrations.

The severity of the weld-toe stress concentration decreases with
decreasing weld reinforcement size. That is, the smaller the weld rein-
forcement, the less effect the weld toe will have in initiating a fatique
crack. This fact suggests that if the weld reinforcement is shallow
enough, the stress concentration due to the weld toe will be less than
that resulting from a pore. The pore would then be the critical location
for fatigue.

Consider the following example. The stress concentration
factor, Kt' for a pore in an infinite body subjected to an axial stress
is 2.05 (for Poisson's ratio of 0.3). The stress concentration factor
for the toe of a butt weld subjected to axial tension[g] is 3.06 for a
0.5 inch thick plate, having a reinforcement width of 0.29 inch (60 degree
bevel) and height of 0.17 inch, and a weld toe radius of 0.02 inch. This
means that if a pore (Kt = 2.05) were present in the weld, the more highly
stressed location would still be the weld toe (Kt = 3.06). The reinforce-
ment height at which the stress concentrations would be equal for both
the weld toe and the pore is 0.11 inch. At this reinforcement height,
there would be an equal chance of a fatigue crack initiating at the toe
or at the pore. At heights below this value, the fatigue crack would be
expected to initiate at the pore.

This example is an over simplification of a rather complex
stress analysis problem. Factors such as bending stress, almost always
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present in actual service, and difficulty in accurately measuring the weld
toe radius have not been considered. Both of these effects would in-
crease the weld-toe stress concentration. The example does illustrate,
however, that unless the weld reinforcement is shallow, fatigue cracks
would not be expected to initiate from a pore.

2.2 Factors of Concern

Having discussed the fact that weld porosity is generally only
a problem when the weld reinforcement is shallow or removed, or when
porosity is excessive, the factors that must be addressed in analyzing
this specific problem will be outlined.

2.2.1 Fracture Mechanics

Porosity can be characterized as a blunt defect having no sharp
asperities which can be analyzed as cracks. Since cracks do initiate
from pores, at some point in the cracks growth, the assumptions of frac-
ture mechanics should be valid for describing the problem. Assuming that
the blunt defect is a sharp crack will give conservative answers, but
they may not be realistic. Some accounting must be made of the life spent
initiating and growing a crack from the pore to a fracture mechanics size
flaw. This initial period of growing a crack can be a significant part
of the total life, especially for high cycle fatigue.

The general finding in the literature is that porosity does not
behave like planar weld defects, such as lack of fusion, which are more
clearly crack-1ike. (See, for example, References 2 and 8.)

2.2.¢ Pore Geometry and Interaction

Porosity, though generally spherical in shape, can assume many
shapes and configurations. These include elongated pores, rows of single
pores or collinear pores, and pore clusters. Determining the effects of
various sizes and shapes of pores is an important factor affecting the
structural integrity of weldments. Unfortunately, almost no work reported
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in the literature has dealt directly with the mechanisms of crack growth
from potentially interacting voids. Instead, researchers have
concentrated on correlating total fatigue lives with parameters describing
the weld porosity. Examples are percent of porosity, reduction in area,
and maximum pore size. From these indirect measurements one may be able
to extract some of the rules governing the interaction of pores.

2.2.3 Residual Stresses

Residual stresses have been shown to significantly decrease the
fatigue life of we]ds[g'lol. Compared to welds not containing residual
stresses, tensile residual stresses can decrease the life, while compres-
sive residual stresses can increase the life. Measurements in HY-80 butt
welds have revealed longitudinal and transverse residual stresses locally
as high as the yield strength[s]. Similar results have been found for
mild steel butt we]ds[lll. Residual stress magnitudes and distributions
can vary great]y[s'lo]. Generally, tensile stresses are seen at the
surfaces and compressive stresses at mid-thicknesses. Because of this
variation, the initiation and propagation of a fatigue crack may depend
on its position in the weld--i.e., on its position in the residual stress

field.

2.2.4 Threshold Crack Growth Behavior

Below some arbitrary crack growth rate, from an engineering
viewpoint, a crack is not of concern because it does not threaten the
integrity of the structure in a reasonable amount of time. Although there
is some debate concerning the determinaiion of threshold stress
intensities, the concept is an important one for the present study.

It has been noted that under variable amplitude loading,
threshold behavior may not be as significant as under constant amplitude
1oading[12]. This is because there will probably be some large loads
which cause the small crack to grow; and as it does, more and more of
the load spectrum will produce stress intensities above the threshold
values.




2.2.5 Crack Retardation

Under variable amplitude loading similar to actual service
conditions, linear elastic fracture mechanics methods have been shown to
give overly conservative crack growth predictions under actual ship Toad
histories when load interactions are not accounted for[lz]. Large loads,
such as bottom slamming, superimposed on smaller loads, such as low fre-
quency wave induced stresses, result in crack growth retardation, which
siow crack growth below rates that would be expected by additive linear
cumulative damage.

3. SCOPE

The objective of this study was to research and define the para-
meters which affect the fatigue performance of marine weldments containing
porosity. A model which accounts for the defined parameters was developed
and exercised to study the sensitivity of fatigue 1ife upon these factors.
The model uses both low cycle fatigue concepts and fracture mechanics
techniques to predict fatigue crack initiation and subsequent growth. It
is important to emphasize that all of the predictions performed during
this study were for weldments with the reinforcement removed. Weldments
with reinforcement left intact will generally fail at the weld toe which
proves to be a much more severe defect than internal porosity[l's].

The developed model was used to predict fatigue lives of tests
performed on a limited number of weld specimens containing internal
porosity as a calibration exercise. The predicted lives were generally
within a factor of two of the actual lives.

Four types of porosity were examined using the predictive
model: wuniform porosity, a single pore, co-linear porosity and cluster
porosity. Fatigue life predictions are made for each of the porosity
types using different plate thicknesses, residual stresses, pore sizes,
and loading. For constant amplitude loading, three stress ratios are
used. A variable amplitude history based upon SL-7 stress data was
developed and applied in the model for all four types of porosity. The
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material used for all the predictions is EH36. Because the fatigue and
crack growth properties of a wide class of steels do not differ sig-
nificantly from this material, the trends developed are probably applicable
to many ship steels.

4. LITERATURE SURVEY

The work in the literature review was directed at definition of
the problem, identification of factors controlling fatigue life and
identification of available life prediction concepts and approaches to
deal with poros’ty. Areas of emphasis were: stress analysis and stress-
intensity solutions for volumetric stress raisers; weld induced residual
stress fields; nondestructive inspection sensitivity and threshold in the
laboratory and in field applications; materials, da/dN, and KIc for
marine materials, particularly those with porosity problems; and analysis
methods used to assess porosity effects on integrity.

4.1. Stress Analysis and Stress-Intensity Solutions for
Volumetric Stress Raisers

4.1.1. Stress Analysis of Cavities

Sternberg[13] and Savin[lq] have made literature surveys on
theoretical stress concentration factors for cavities and holes. These
references Tist the papers related to three-dimensional stress concentra-
tions around spherical, spheroidal and ellipsoidal cavities in an infinite
or finite elastic medium. The mutual effect of two or more spherical
cavities in an infinite body and the interference between a spherical
cavity and external boundary are also included in these references.
Tsuchida and Nakahara[ls] studied a three dimensional stress concentration
around a spherical cavity in a semi-infinite elastic body. Mokarov[lﬁ]
experimentally determined the stress distribution around a chain consisting
of three spherical pores and a chain consisting of two different pores.

Lundin[17 described the primary types of porosity that may be
of concern in welding as follows: (1) uniformly scattered (distributed)
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porosity; (2) cluster (localized) porosity; (3) linear (aligned) porosity;
(4) wormhole (elongated) porosity. (Porosity in weld metals is generally
spherical or wormshaped. Elongated spherical porosity is rarely found in
the weld metal.) Masubuchi[lg?

factors around porosity (under uniaxial loading) are generally below Kt =

has shown that stress concentration

4.0. Stress concentration factors around porosity are generally low. A
qualitative discussion of stress fields near cavities is presented in
Section 6 titled "Ellipsoidal Cavities".

4.1.2. Stress Intensity Factor for Volumetric Stress Raiser

Using a superposition method, Krstic[lg] obtained a stress
intensity factor solution for an annular flaw emanating from the surface
of a spherical cavity. Stress intensity factor handbooks[20'21] contain

three-dimensional solutions for circular and elliptical cracks in a solid.

4.2. Weld-Induced Residual Stress Fields

In Chapter 6 of Reference 22, Masubuchi has a comprehensive
discussion of the magnitude and distribution of residual stresses in steel,
aluminum alloys, and titanium alloys weldments. Local residual stresses
at the surface of pores are not reported in the literature.

The fatigue severity of porosity relative to other weld discon-
tinuities such as weld toe or ripple depends on both the stress concentra-
tion factors and residual stresses. Porosity which is located in zones of
high tensile residual stresses might be the critical sites for fatique
failure. Babev[23] has found that the dimensions and distributions of
porosity had little influence on the fatigue resistance of welds if it is
Tocated in a high residual tensile stress field.

4.3. Nondestructive Inspection Sensitivity and
Threshold in the Laboratory and in
Field Applications

Barsom[24] has found that the probability of detecting small
discontinuities is remote. Porosity might obscure other defects. Ffor
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example, planar defects may be embedded in cluster porosity and can not
be detected using nondestructive methods.

4.4. Fatique Crack Growth Data, Fracture Toughness, and
Strain-Controlled Fatique Behavior for Marine Materials
(Particularly Those With Porosity Problems)

Masubuchi[22'25] has extensively reviewed the materials used for
marine engineering. Marine welded structures are primarily made of steels,
aluminum alloys, and titanium alloys. The steels include carbon steels,
high strength lTow alloy steels, quenched-and-tempered steels, and maraging
steels. Aluminum alloys in the 5xxx series and the 7xxx series are used
extensively in marine applications. Among the titanium alloys, pure
titanium and the Ti-6A1-4V alloy have been most commonly used. Although
there are many causes of porosity in fusion welds, aluminum alloys and
titanium alloys are more active than steels and thus prone to weld
porosity.

4.4.1 Fatigque Crack Growth Data

Hudson and Seward[26'27] have compiled a list of sources of
fracture toughness and fatigue crack growth data for alloys. This list
covers many marine metallic materials. Most of the fatigue crack growth
data is for the base metal. There is very little data available for weld
metals and heat affected-zone (HAZs). Maddox[28] has conducted tests on
a variety of structural C-Mn steels base-metals, weld-metals, and HAZs.
The test results show that the rates of fatigue crack growth in weld
metals and HAZs are equal or less than that in the base metal. Therefore,
the upper scatter band of fatigue crack growth rates for base metals can
be used to obtain conservative engineering estimates of the fatigue crack
growth rates in base metals, weld metals, and HAZs. Barsom[29] has
suggested upper scatter band equations for martensitic steels, ferritic-
pearlitic steels, and austenitic steels.




4.4.2. Fracture Toughness

In general, there are four types of fracture toughness tests used
for marine welded structures[30]: (1) the Charpy impact tests; (2) the
Drop Weight tests (DWT), or the closely related Dynamic Tear Test; (3)
fracture mechanics tests to measure critical stress intensity factors (KC
or KIC) or critical values of the J-integral (JC or JIC); (4) the Crack-
Tip-Opening Displacement (CTOD or COD) test. Masubuchi, et a1.[31]
done a literature survey on the notch toughness of weld metals and the
HAZs, evaluated primarily by the Charpy V-notch impact test. Ship
Structure Committee Reports 248[32] and 276[33] present fracture toughness
characterization of ship steels and weldments using Charpy impact test,

DWT test, and explosion structural tests. References[26'27] list fracture
toughness for many of the marine metallic materials. Lawrence, et a].[34]
studied the effects of porosity on the fracture toughness of three aluminum
alloy weldments using DWT energy and J integral.

have

4.4.3. Strain-Controlled Fatique Behavior

Very few strain-controlled fatigue properties are available for
marine materials. References[35'36] provide several cyclic fatigue
properties for the base metals, weld metals, and HAZs of various steels

and aluminum alloys.

4.5. Analysis Methods Used to Assess the Effects of
Porosity on Structure Integrity

British Standards institute Document PDG493:1980[37] provides
guidance on some methods for the derivation of acceptance levels (fitness
for service) for defects in fusion welded joints. In the section below,
the analysis methods used to assess the effect of porosity on the fatigue
performance of weldments will be discussed.




4,.5.1 Previously Used Methods

4.5.1.1. Harrison's "Quality Bands" Method

Harrison[1] presented a fitness-for-service evaluation of
porosity as shown in Figure 1. The levels shown for quality bands denoted
as V, W, X, Y, Z and corresponding to 0, 3, 8, 20 and 20+ percent porosity
were drawn based on the available data. Figure 1 also shows the comparison
of quality band method with fatigue test results. This method generally
gives conservative and lower-bound fatigue resistance estimates for
weldments with porosity.

4.5.1.2. Hirt and Fisher's LEFM Analysis

Hirt and Fisher[38] have studied the influence of porosity on the
fatigue behavior of longitudinal web-to-flange welds by assuming the
pores to be circular penny-shaped cracks. Linear elastic fracture
mechanics was used to calculate the fatigue crack propagation life. This
approach may be very conservative because the pores are generally rounded.

4.5.2. An Analysis Based on Total Fatique Life - A Proposal

The most serious deficiency of the method of Hirt and Fisher is
the neglect of the period of life devoted to fatigue crack initiation and
early growth. A more accurate assessment of the effects of porosity on the
fatigue life of marine structures could be obtained by adding estimates of
fatigue crack initiation life to the fatigue propagation life using methods
such as those of Lawrence, et a].[39] and Reemsnyder[40]. Both of these
methods provide estimates of the fatigue crack initiation life and consider
the important effects of mean and residual stresses. While LEFM provides
good estimates of long crack growth, methods developed by Leis[41] could
be used to improve the accuracy of fatigue crack propagation life estimates
for the portion of the fatigue crack propagation life in which the dominant
crack is located within the inelastic stress field of the notch (pore).
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5. ANALYTICAL MODELING BACKGROUND

The model used to predict the fatigue lives of weldments used
during this study consists of two parts; the crack initiation life, Ni' in
cycles, and the crack propagation life, Np, in cycles. The sum of these

two components is the total life, Nt'

N, + Np = Ny (1)
The crack initiation life is estimated using low cycle fatigue concepts and
the crack propagation life is estimated using linear elastic fracture
mechanics concepts. The intent of this section is to provide the low
cycle fatigue and fracture mechanics background used in the development
of the predictive model. In Section 7, titled Analytical Program, these
concepts will be applied to single pores, co-linear porosity, uniform

porosity, and pore clusters.

5.1 Initiation Life Model

Fatigue cracks generally initiate at a geometrical discontinuity
such as a notch or pore. These act as stress concentrations, raising the
stress in the region of the notch to levels above the nominal stresses.

The material at the notch root may deform plastically while the rest of the
component remains essentially elastic. Subjecting the region to cyclic
loading resulting in plastic deformation will eventually result in a
fatigue crack.

5.1.1 Notch Analysis

Determining the stresses and strains in the notch region after
the onset of local plasticity requires a notch analysis technique. In the
elastic range, the notch stress can be calculated using the elastic
stress concentration factor, Kt‘ The Ky value is simply a conversion
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factor between the maximum principal notch stress, o, and remote stress,
S,

o= Kt S , (2)

and is determined using elasticity theory or by finite element analysis.
After the notch region material deforms plastically, however, the elastic
stress concentration factor no longer applies as a direct conversion
factor. The stress will rise at a lesser rate and the strain at a greater
rate than during elastic deformation where both stress and strain rates

were equal. Neuber's ru]e[42]

is used to estimate the local stresses and
strains in this situation. Nueber's rule states that the elastic stress

concentration, Kt' will remain equal to the geometric mean of the instan-
taneous stress and strain concentration factors, Ka and KE’ respectively,
1/2

Ke = (K, %) (3)
Rewriting this relation in terms of stress and strain ranges as
Kt - ( Ao A€
AS Ae

where AS is the nominal stress range, and Ae is the nominal strain range,
and recalling that

1/2

be = AS / E (4)

where E is the elastic modulus, Neuber's rule may be written for nominally
elastic response as

2 2
AS K¢

—-——E—— = AGAG
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This expression relates the local stress-strain response at the notch
root to the nominal stress and elastic stress concentration factor.
Furthermore, representing the stress-strain response of the material with
power law hardening constants,

A€=_A£.+ A_a.
E K

where K is the strength coefficient, and n is the strain hardening
exponent, the relation can be written with Ac as the only unknown,

1/n |
E £ K

Solving for Ao is accomplished using an iterative technique such as
Newton's method.

5.1.2 Fatique Notch Factor

In fatigue testing, it is generally observed that the actual
lives of notched components are somewhat longer than would be expected
for the notch root stress calculated using the elastic stress concentration
factor, Kt' That is, notches have a less detrimental effect on fatigue
Tife than would be predicted. This effect is dependent upon both defect
size and material. To account for this difference, a fatigue notch
factor, Kf, is often used in place of Kt for fatigue 1ife predictions.
The fatigue notch factor is defined as

= %unnotched at a finite life (e.g. 107)

notched
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The value of K¢ for a given notch geometry and material can be determined
experimentally or by the use of analytical relations. A commonly used

fatigue notch factor relation is Peterson's equation[43],
Ky = 1
Kf=1+(~1———f+ar)' (7)

where a is a material constant dependent on strength and ductility and r
is the notch tip radius. The material constant a can be approximated for
ferrous-based wrought metals by an equation fitted to Peterson's data,

1.8
a =(§Oy0> X 10'3 in. (8)

u

where Su is the ultimate strength in ksi units. Peterson's equation
indicates that small notches are least sensitive in fatigue, and that
ductile materials are less sensitive to notches in fatigue than strong
materials.

5.1.3 Notch Strains and Low Cycle Fatique

Using Nueber's rule for notch root stress-strain behavior along
with Peterson's equation for the fatigue notch factor, it is possible to
estimate the stress-strain response of the notch root material subjected
to fatigue loading. It still remains to relate these local stresses and
strains to actual fatigue life data. Because the plastically deformed
notch root material is constrained by the surrounding elastic material, the
notch root is nearly in a strain-control condition. The notch root
material is essentially cycled between strain limits analogous to strain-
control, low cycle fatigue testing. The assumption, therefore, is that
strain-life fatigue data obtained using unnotched, low cycle fatigue
specimens can be used to predict the cycles to crack initiation, N, at a
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notch root. Low cycle fatigue strain-life data is often represented by
the Coffin-Manson equation with Morrow's mean stress correction,

AE i -
— = E(M)C + (—E—Uf i )(znf)b (9)

where Ag/2 is the strain amplitude, E% is the fatiqgue ductility coeffi-
cient, a% is of the fatigue strength coefficient, T is the mean stress,
2Nf is the reversals to failure, Nf is the cycles to failure, c is the
fatigue ductility exponent, and b is the fatigue strength exponent. By
relating the strain calculated at the notch root to the strain-life data,
the number of cycles to initiate a fatigue crack at the notch can be
estimated. This is the basis of the initiation life predictions. The
strain-life data parameters, E}. a%, c, and b, are obtained either by low
cycle fatigue testing or by using estimates.[44]

5.2. Propagation Life Model

5.2.1. Fatique Crack Growth Rate

Paris and Erdogan[45] have shown that fatigue crack growth rates
are dependent upon the stress intensity associated with the fatigue crack
tip. The power-law relationship is of the form

%ﬁ = A AK™ (10)

where da/dN is the fatigue crack growth rate, AK is the stress intensity
factor range, and A and m are material constants dependent upon environ-
ment, stress ratio, temperature, and frequency. This relationship is
considered valid above an experimentally determined threshold stress
intensity value. Below the threshold value, fatigue cracks grow so
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slowly as to be of no practical consequence. The growth rate expression
used throughout this study has a correction factor to account for mean
stress effects,

where R is the stress ratio,

R = Smin/Smax

5.2.2. Stress Intensity Factor

The general relationship for the stress intensity factor range
is written as

AK = Y AS (x a)}/2 (12)

where Y is a geometry dependent factor, AS is the stress range, and a is
the crack length. The geometry factor Y is actually composed of a number
of separate multplicative geometry factors which account for the shape of
the crack, the thickness of the component or specimen, and the position
of the crack within the body. The value Y is written as

y = ° (13)

where MS accounts for the free front surface, Mt accounts for the finite
plate thickness, Mk accounts for the nonuniform stress gradient due to the
stress concentration of the geometric discontinuity, and °O accounts for

the crack shape.
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The MS factor, which accounts for the front free surface, is
expressed by the re]ation[46]

M = 1.0 - 0.12(1 - a/2c)? (14)
where a/c is the ratio of the minor and major ellipse axes. The majority
of cracks examined in this study, however, are embedded in the material,
so the free surface correction is equal to unity.

The Mt factor, which accounts for the finite plate thickness, is
found in stress intensity handbooks such as[zo'ZI]. The Mk factor requires
a brief explanation. The need for such a factor arises because the
stress, o, near a discontinuity is greater than the remotely applied
stress, S, used to calculate AK. A crack tip growing through the stress
gradient is therefore subjected to higher stresses which result in a
greater stress intensity factor range, AK. Not accounting for this
increase in stress intensity would lead to unconservative predicted
growth rates near the discontinuity. The discrepancy in total life would
be greatest for large notches because the stress gradient is sustained in
proportion to the absoluté notch size. The subject of stress intensity
factors in stress gradients is examined by Albrecht and Yamada[47]. The
method presented in Reference 47 is used to calculate Mk in the present
study.

The crack shape correction factor, 00, is expressed by the
integral

% = ];xlz [1-(1-a%/c?) sinp]l/2 dé (15)

where a is the length of minor axis of ellipse and c is the length of the
major axis.

6. STRESS FIELDS NEAR INTERNAL CAVITIES

Porosity is defined as cavity type discontinuities (voids) formed
by gas entrapment during solidification. The shape of the void is
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dependent on the relative rates of solidification of the weld metal and
the nucleation of the entrapped gas. The resultant stress field surround-
ing the pore depends upon the pore shape and the loading.

6.1, Ellipsoidal Cavities

The shape of porosity can be generalized for analytical purposes
as an ellipsoid. The coordinate system defining the cavity is shown in
Figure 2. Pore shapes can range from an oblate ellipsoid (a=b=1) to a
sphere (a=b=c=1) to a prolate ellipsoid (b=c=1) or any shape in between,
as shown in Figure 3. The elastic solution for the stress field around a
triaxial ellipsoidal cavity in an infinite medium has been found by
Sadowsky and Sternberg[48]. The stress in the plots in Figure 3, 9, is
the local stress resulting from an applied uniaxial stress, Sz' of unity.

Some general characteristics of the stress fields are worth
noting. Subject to a uniaxially applied stress of SZ, the maximum stress
concentration will always occur at the minor axis of the x-y plane ellipse,
point B. The stress T, therefore, is plotted relative to point B along
the y axis. In the limiting cases, when a=b=1 and c approaches 0, the
stress o, tends toward infinity, representing the case of an embedded
penny-shaped crack. As c approaches infinity, o, tends toward the remote
stress, Sz' When b=c=1, and a also equals 1, the solution is that for a
sphere. As a approaches infinity, the solution coincides with that of a
hole in a plate with a stress concentration of 3.

These solutions are for cavities in an infinite medium. In
application to weld porosity, they are valid if the size of the cavity is
small in relation to the dimensions of the weldment.

6.2. Spherical Cavities in a Semi-Infinite Medium

The elastic solution for the stress field near a spherical cavity
in a semi-infinite medium has been found by Tsuchida and Nakahara[ls].
Figure 4 shows the effect of increasing stress concentration as the
distance between the surface and the pore decrease. The plot also shows
that the presence of the surface has little effect on the stress field
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FIGURE 2. ELLIPSOIDAL CAVITY AND CARTESIAN CO-ORDINATE SYSTEM
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FIGURE 3. LOCAL STRESS, oz, ALONG Y AXIS, FOR VARIOUS ELLIPSOIDAL
CAVITIES SUBJECTED TO NOMINAL STRESS, Sz, OF UNITY
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FIGURE 4. LOCAL STRESS, oz, ALONG X' AXIS, FOR SPHERICAL CAVITY NEAR A
SURFACE, SUBJECTED TO NOMINAL STRESS, Sz, OF UNITY
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when the ratio of the pore radius to the distance between pore center and
surface is less than 0.4.

6.3. Cavity Interaction

The problem of cavity interaction is complex and correspondingly
there is little information available on the topic. Sadowsky and
Sternberg[48] examined the problem and solved two specific cavity spacings
for triaxial loading. Peterson[49] took these results and made approxi-
mations for the uniaxial case. The results are presented in Figure 5
along with solutions for holes. During the present study, cavity interac-
tion was assumed only for the case of cluster porosity where pores are
expected to be in close proximity to each other. All other pores were
assumed to be non-interacting. Markarov[16] has demonstrated through
photoelastic techniques that cavities separated by two pore diameters do
not effect the stress distribution of the other.

7. ANALYTICAL PROGRAM

7.1. Application of Initiation-Propagation Model to Porosity

7.1.1 Initiation Life

Volumetric discontinuities such as pores act as relatively mild
stress concentrations because of their rounded asperities. A spherical
cavity, for instance, has a stress concentration factor of only 2.05 (with
Poisson's ratio of 0.3). The low stress concentration suggests that a
fatigue crack would take a large number of stress cycles to initiate.

For smaller pores more cycles would be needed because of the fatigue
notch size effect, Kf. Larger pores would be expected to initiate cracks
sooner.
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7.1.2 Propagation Life

When'a crack does form, it initially has a high stress intensity
factor range, AK, while growing through the pore stress gradient. The
stress gradient, however, decays rapidly as is characteristic of volu-
metric defects. The larger the pore size, the longer the distance that the
crack is subjected to the higher stress because the gradient is sustained
in proportion to the absolute pore size. The crack shape is assumed to
remain circular while it propagates. A circular crack shape is the most
energetically stable planar flaw configuration for Mode I crack growth.
Considering Equation 13, 00 for a circular crack is 1.57 whereas 00 for
an elliptical crack with a small a/c aspect ratio is nearly 1.0. This
means that a circular crack will have only 0.6 times the stress intensity
factor range, AK, than an elliptical crack with a small aspect ratio and
an equal crack front (a) dimension.

A plasticity crack length correction factor was not used in the
crack growth calculations. The generally low stresses (nominally elastic)
used in this study results in a small plastic zone size at the crack tip.
The confined yield zone assumption means that LEFM is valid for most of
the propagation calculation.

7.1.3 Initial Crack Size

The initial crack size used in the propagation estimates was
taken as 0.05 times the pore diameter. This assumption starts the crack
at the same distance relative to the stress gradient in all cases. The
initial crack length is considered to be beyond the region were anomalous
crack %rowth behavior when analyzed in terms of LEFM occurs. Smith and
Miller 50] found that the transition length between anomalous behavior
and that governed by LEFM to be 0.065 times the diameter for a circular
hole. This distance would be expected to be somewhat less for a three-
dimensional flow such as a pore.
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7.1.4 Failure Criteria

The failure criteria for all cases is through thickness cracking.

7.2. Viability of the Fatique Life Model

The literature was searched for fatigue tests on weldments
containing porosity with sufficient documentation to apply the predictive
model. The most useful type of documentation was fractographs of the
surfaces which clearly showed the sizes, shapes, and positional
relationships of the porosity. Only two test programs[6'51] were found
which included such fractographs. A total of eight fatigue tests were
found to which the model could be applied. Neither of these test
programs, however, included material property data for the weld metal.
Both test series used E70 weld metal in a gas-metal-arc welding process.
The method for introducing porosity into the weld metal was interruption
of the shielding gas flow in both studies.

Because no fatigue material property data was available for E70
weld metal, E60 S-3 (2 pass) weld meta1[36] properties were used as the
baseline data. The mechanical properties of E60 S-3 (2 pass) weld metal
is shown in Table 1 and Figures 6 and 7.

Leis, et a].[s] performed axial fatigue tests on pipe wall
segments with girth welds in A106B steel. The weld reinforcement was
Teft intact, but the weld toe was ground to a large radius to cause
fatigue crack initiation from the internal flaws. Three tests contained
sufficient porosity that allowed application of the model. The
fractographs of these specimens are shown in Figure 8(a-c). The porosity
clusters are ellipsoidal in shape and include individual pores of
approximately 0.02 inches in diameter. Within the cluster area, the
percent porosity is approximately forty percent by area.

Ekstrom and Munse[SI] performed fatigue tests on a double V butt
weld geometry. In this test program, the reinforcement was completely
removed to cause internal crack initiation. Five tests included welds
with severe porosity. The fracture surfaces for these test pieces are
shown in Figure 8(d-h).
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TABLE 1. MECHANICAL PROPERTIES OF E60 S-3(2P) WELD METAL
Monotonic Properties
Young's Modulus, E 27400 ksi 188923 MPa
Yield Strength (0.2%) S’ 59 ksi 408 MPa
Tensile Strength Su 84 ksi 579 MPa
Reduction in Area % RA 60.7 60.7
True Fracture Strength o, 126 ksi 869 MPa
True Fracture Ductility €, 0.933 0.933
Cyclic Properties
Cyclic Yield Strength o; 53 ksi 373 MPa
Cyclic Strength Coefficient K: 179 ksi 1234 MPa
Cyclic Strain Hardening Exponent n 0.197 0.197
Fatigue Strength Coefficient o; 149 ksi 1027 MPa
Fatigue Strength Exponent b -0.09 -0.09
Fatigue Ductility Coefficient €, 0.602 0.602
Fatigue Ductility Exponent o -0.567 -0.567
Propagation Properties
Crack Growth Coefficient A 2.69x10712  3.95x10714
Crack Growth Exponent m 5.8 5.8
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(a) CPN-2 Stress Range 27.5 ksi.
Life - 2,115,600

(b) CPN-4 Stress Range 33 ksi,
Life - 54,600

(c) CPN-5 Stress Range 27.5 ksi,
Life - 334,100

FIGURE 8. FRACTURLC SURFACES OF WELDS WITH CLUSTERS OF POROSITY
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(d) PS 5-1 (e) PS 5-2
Stress Range 34 ksi Stress Range 34 ksi
Life - 713,300 Life - 325,500

(f) PS 5-3 (g) PS 5-4
Stress Range 44 ksi Stress Range 29 ksi
Life - 80,300 Life - 633,000

(h) PS 5-5
Stress Range 27 ksi
Life - 1,024,900

FIGURE 8. FRACTURE SURFACES OF WELDS WITH CLUSTERS OF POROSITY
(Continued)
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Fatigue life predictions were made for all eight tests using the
model described in Section 7.3.6. All the individual pores were assumed
to be spherical so an elastic stress concentration factor, Kt' of 2.05 was
applied. In those cases were interaction was assumed an additional
factor of 1.12 was applied. Table 2 lists the experimental test results
and the fatigue predictions for each test. For each test, the following
predictions are presented: predicted fatigue life at the specified test
stress range; predicted stress range for the specified fatigue life;
predicted fatigue life for specified test stress range treating the
porosity cluster as a gross ellipsoidal cavity with dimensions a, b, and
c; and fatigue life predictions using only the reduced cross sectional
area without assuming a stress concentration. The results show that
treating the pore cluster as a gross ellipsoidal cavity is somewhat
conservative while considering the flaw as merely a reduction in cross
sectional area is very unconservative. Applying the model for cluster
porosity resulted in good estimate for fatigue life and, when viewed in
terms of stress, even better estimates. The absolute magnitude of the
predictions are not as important as the trends because of the uncertainty
in material properties. Figure 9(a) shows the comparison between
experimental and predicted fatigue lives and Figure 9(b) shows the
comparison between the experimental and predicted stress ranges for the
test life.

The predicted lives are dominated by the crack initiation
period. This is due mainly to the size of the defects with respect to
the cross sectional area of the specimen. The initiation life is
considered to be the number of cycles until the crack begins growing
radially away from the defect cluster. This includes the period of crack
coalescence between the pores. After the cracks between the pores
coalesce, the material at the outer portion of the periphery pores are
assumed to initiate a crack and grow toward the surface. At this point
the net cross sectional area is greatly decreased and the resultant higher
stresses propagate the crack rapidly until failure.

These predictions are based on a limited sample of weldments and
therefore can not be considered conclusive evidence that the predictive
model is viable or not. It should be noted, however, that assuming an
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existing crack-like defect equal to the size of the cluster would lead to
grossly conservative 1ife estimates (equal to the propagation lives).

The model seems to reflect the correct trends for the fatigue lives of
the specimens tested. The results are even more encouraging when
considering percent error in stress range predicted to yield the fatigue
life of the sample. A number of uncertainties such as using approximate
mechanical properties data and estimating the percent area porosity and
pore sizes from photographs will certainly contribute to the scatter in
the predictions. The small sample size also compounds the problem. The

results are encouraging, but further testing is warranted to validate its
accuracy.

7.3. Parametric Study

From the literature review, the parameters which have been
found to influence the fatigue lives of weldments containing porosity
are: weld type, material, thickness, residual stress, loading, porosity
type, and pore size. In order to explore the effects of these parameters,
four distinct analytical procedures are presented; one each for the four
types of porosity being considered. Because of the limited amount of
actual test data, the procedures rely in large part on assumptions which
are considered to be consistent with the mechanisms of crack initiation and

growth. The assumptions for each procedure are presented in the ap-
propriate sections.

7.3.1. Matrix of Fatique Life Predictions

The matrix of fatigue life predictions is shown in Table 3. For
the constant amplitude loading, there are 144 separate cases to be
examined. Each case requires loading at four stress ranges to generate
S-N curves. This represents a total of over 550 individual 1ife predic-
tions. All nominal fatigue loadings will be assumed to be in the elastic
range. The maximum nominal load for the constant and variable amplitude
loadings will be less than the yield strength of EH36, i.e. 51 ksi. Four
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TABLE 3. MATRIX OF FATIGUE PREDICTIONS

Parameters Options
Weld type Transverse butt weld
Steel EH36
Thickness 0.5 in., 1.0 in.
Residual stress +Sy, 0
Loading:
Constant amplitude R=-1,0, 0.5
Variable amplitude SL-7 history, 0 and
6.5 ksi mean stress
bias
Porosity Size, inch
Porosity Type 0.5-inch weld 1-inch weld
Uniform porosity 0.015 0.030 0.045 0.015 0.045 0.075
Single pore 0.125 0.1875 0.25 0.1875 0.25 0.30
Co-linear porosity 0.125 0.1875 0.25 0.1875 0.25 0.30
Cluster porosity 0.125 0.1875 0.30 0.1875 0.25 0.40
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stress ranges; 80, 60, 40, and 20 percent of the yield strength were used
to construct S-N curves.

The geometry and coordinate system used in this study is shown
in Figure 10. Note that no width dimension is included on the plate. The
calculations for all life estimates in the parametric analysis are based
on the assumption of infinite width. This means that the size of the
pore and subsequent crack will not change the nominal applied stress, S.
The results can be applied to a finite geometry correcting for a decrease
in net cross sectional area.

A1l life predictions are made for a butt weld with the reinforce-
ment removed to model crack initiation from internal porosity. The size
and number of the porosity was chosen according to Section 2.6.4:
Radiographic Inspection for Porosity in the Rules for Nondestructive
Inspection of Hull welds[54]. Figures 11 and 12 show the porosity
acceptance charts from this code for the thicknesses examined in this
study. The code states that the maximum area percent porosity allowable
in any size weld is 1.5 percent. Three porosity sizes were used. One
was equal to the maximum allowable porosity size as defined in the code.
The other two sizes are chosen larger than the first one.

The S-N curves presented were constructed using a smooth fit to
the total lives. Cases where lives were greater than 108
the plots. The curves terminate at the greatest predicted life less than
108. Those predictions greater than 108 are indicated in the tables.

are not shown on

7.3.2. Material Properties

The material properties for ABS EH36 used in this study are
presented in Table 4 and in Figures 13 and 14. The material is assumed
to be homogeneous and isotropic. In reality, weld metal is seldom
homogeneous, due to non-equilibrium cooling rates, thermal gradients, and
the introduction of impurities. Also, the pressure of porosity suggests
some degradation of material properties as the result of improper welding
practice. However, it is beyond the scope of this study to account for
any microstructural gradients due to the welding process.
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THE PLATE IS ASSUMED MANY TIMES THE THICKNESS OF THE WELD
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Pore type Pore diameter Allowable pores

2.54 mm (0.10 in) 2
Assorted 1.02 mm (0.04 in.} 12
0.508 mm (0.02 in.) 45
[ ] ° Y - . [ . . ° ° . - * . . . . .
° : et e
o . ® . - A L] .
. . M e

Large 2.54 mm (0.10 in.) 6
o o o 0

® °

Medium 1.02 mm (0.04 in.) 36

. . . hd . e ® . . b . . ¢ b .
. * . e - [} . .

. . . . . . ° . . . . o .
Fine 0.508 mm (0.02 in.) 143

-----

FIGURE 11. CLASS A AND CLASS B POROSITY CHART FOR 0.5 INCH (12.5 MM) THICK
MATERIAL
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Pore type

Pore diameter

Allouable pores

3.17 mm (0.125 in.) 2
Assorted 1.27 mm (0.05 in.) 17
0.762 mm (0.03 in.) 45
¢ L [ P ‘ -
. @ ) ® .
Y R hd .
Large 3.17 mm (0.125 in.) 7
o
° o
o
° o
Medium 1.27 mm 10.03 in) 46
Fine 0.762 mm (0.03 in.) 127
FIGURE 12. CLASS A AND CLASS B POROSITY CHART FOR 1.0 INCH (25.3 MM) THICK

MATERIAL
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TABLE 4. MECHANICAL PROPERTIES OF ABS EH36 STEEL

Monotonic Properties

Young's Modulus,

Yield Strength (0.2%)
Tensile Strength
Reduction in Area

True Fracture Strength
True Fracture Ductility

Cyclic Properties

Cyclic Yield Strength

Cyclic Strength Coefficient
Cyclic Strain Hardening Exponent
Fatigue Strength Coefficient
Fatigue Strength Exponent
Fatigue Ductility Coefficient
Fatigue Ductility Exponent

Propagation Properties

Crack Growth Coefficient
Crack Growth Exponent

Q &N »n UL M
- -
x
>

Al

30,700 ksi
61 ksi
75 ksi

77.4

186.3 ksi

1.49

49 ks
132 ks
0.162
103 ks
-0.075
0.227
-0.462

1.76x10"
4.5

i

i

i

12

211,677 MPa
421 MPa
518 MPa
77.4
1285 MPa
1.49

338 MPa
912 MPa
0.162
713 MPa
-0.075
0.227
-0.462

2.92x10"14
4.5
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FIGURE 13. MONOTONIC AND CYCLIC STRESS-STRAIN RESPONSE FOR ABS EH36
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Strain Amplitude

ABS EH36

FIGURE 14.

Reversals to Failure, 2Nf

STRAIN-LIFE DATA FOR ABS EH36
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7.3.3. Single Pore

The single pore geometry and assumed crack growth pattern are
shown in Figure 15. The maximum pore size allowed for an isolated pore in
the Rules for Nondestructive Inspection of Hull Welds[54] is given as
0.25t or 0.1875 inch, whichever is less. The pore sizes chosen represent
the largest allowable pore size and two larger sizes. The pore is assumed
spherical and positioned at the centroid of the cross section. The crack

growth pattern is assumed to remain circular throughout the crack

propagation stage. The finite thickness correction factor, Mt' for a
circular crack is approximated by the polynomial expression
M, = 1.46 - 1.85(a/(t/2)) + 1.79(a/(t/2))? (16)

This expression is the result of a regression of solutions of different
crack depths found on pages 294-295 in Rooke and Cartwright[ZI] for
elliptical cracks in a semi-infinite medium. The stress intensity
solutions are presented in Figure 16. Note that the initial stress
intensity factor is quite high. As the crack becomes larger and grows
out of the region of influence of the stress gradient, the stress intensity
value decreases.

The results of the fatigue life predictions are presented in
Tables 5 and 6 and plotted as S-N curves in Figures 17-20.

7.3.4. Uniform Porosity

The uniform porosity geometry and assumed crack growth pattern
are shown in Figure 21. The porosity is assumed to be uniformly dis-
tributed throughout the weld. The Rules for Nondestructive Inspection of
Welds[54] states that no more than 1.5 percent area porosity is allowed.
It also states that pores smaller than 0.015 inch may be disregarded.

The smallest pore size chosen is therefore 0.015 inch. Two other larger
pores are also considered for both thicknesses. The analysis assumes
that the maximum allowable area percent porosity is always present
throughout the weld. This reduction in net cross sectional area has the
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FIGURE 17. S-N CURVES FOR SINGLE PORE GEOMETRY IN 0.5-INCH THICK PLATE AND
51 KSI RESIDUAL STRESS
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FIGURE 18. S-N CURVES FOR SINGLE PORE GEOMETRY IN 0.5-INCH THICK PLATE AND
ZERO RESIDUAL STRESS
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FIGURE 19. S-N CURVES FOR SINGLE PORE GEOMETRY IN 1.0-INCH THICK PLATE AND
51 KSI RESIDUAL STRESS
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FIGURE 20. S-N CURVES FOR SINGLE PORE GEOMETRY IN 1.0-INCH THICK PLATE AND
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effect of raising the net section stress. (This assumption is not made
for the other three geometries where the area reduction caused by the
porosity is considered as negligible.)

The critical pore in this particular analysis is located in close
proximity to the surface of the weldment. The elasticity result of
Tsuchida and Nakahara[ls] for a pore located 0.125 times the pore size
(diameter) from the surface (a = 0.8 in Figure 4) is used to calculate
the stress gradient to the surface. Since the pores relation to the
surface causes an increase in the stress concentration, it is assumed
that this pore will initiate a fatigue crack first. As this crack beccmes
the dominant singularity, no other cracks initiate. The stress intensity
solution for the gradient near the surface is shown in the inset in
Figure 22. The stress intensity steadily decreases until the crack
breaks the surface. This near surface crack growth is assumed remain
circular. When the crack intersects the near surface, the stress intensity
solution is approximated as that of a semicircular crack in a slab. The
stress intensity solution for this crack geometry is also found in[21]
(page 298) and is represented by the expression

M, = 0.70 - 0.34(a/t) + 0.47(a/t)? (17)

where a is the crack radius and t is the plate thickness. The stress
intensity solution for this geometry is shown in Figure 22.

The results of the fatigue life calculations are presented in
Tables 7 and 8 and as S-N curves in Figures 23-26. Many of the cases which
were analyzed proved to be non-propagating cracks, especially the small
pores and high stress ratios.

7.3.5. Co-linear Porosity

The pore geometry and assumed crack growth pattern for the co-linear
pores are shown in Figure 27. Lundin[17] indicates linear or aligned
porosity is usually associated with a root or interpass and found in
concert with lack of penetration or fusion. Caution should therefore be
exercised when trying to ascertain the structural integrity of a weldment
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containing co-linear porosity based upon the pores alone. Assuming that
the weld may have a significant crack initiation period may be highly

unconservative if a planar defect such as lack of penetration is present.

The analysis technique presented here does not account for any planar

defects and should be considered in the light of the foregoing comments.
The pores are initially spaced two pore diameters apart so no

stress gradient interaction is assumed. The cracks initiating from the

pores are assumed to occur at nearly the same time and grow simultaneously.

Before the individual circular cracks join, there will be interaction
between the approaching crack tips resulting in an increased stress
intensity factor and accelerated crack growth. No stress intensity
solution was available for two co-planar cracks in a three dimensional

medium so this interaction was approximated by the solution two dimensional

sheet so]ution[Zl]. The solution is represented by the polynomial
expression

M., = 1+ 0.88(a/d) - 6.6(a/d)? + 23.3(a/d)’ - 32.9(a/d)* + 16.6(a/a)
where a is the crack radius and d is the distance between pore centers.
The stress intensity solution is shown in the inset in Figure 28. This
assumption is conservative although somewhat tempered by the crack shape
factor ¢0 in Equation (13). For a circular crack, ¢0 is 1.57 which
reduces the stress intensity by about 0.6.

After the individual circular cracks join, the crack shane
becomes elliptical (a/c equals approximately 0.4) and growth continues.
As with the circular cracks, the elliptical crack is assumed to undergo
self-similar growth. This assumption is less accurate since elliptical
cracks actually tend to grow into the more energetically stable circular
shape. The Mt correction factor for the elliptical crack is again found
in[21] (pages 294-295) and is approximated by

M, = 1.22 - 1.10(a/(t/2)) + 1.40(a/(t/2)) (19)
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The stress intensity solution is plotted in Figure 28. The results of
the fatigue predictions are given in Tables 9 and 10 and as S-N curves in
Figures 29-32.

7.3.6. Cluster Porosity

The pore geometry and assumed crack growth pattern for the
cluster porosity analysis is shown in Figure 33. The cluster porosity is
the most difficult to model analytically because of the infinite variety
of pore sizes and configurations which clusters can assume. This variety
is apparent from the fracture surface photographs in Figure 8. The
geometry for the analysis presented here was chosen to model the three
dimensional nature of clusters (not all pores on the same plane) and the
possibility of interaction between individual clusters. The individual
pores are all equal size and are assumed to initiate a crack at the same
time. They are spaced a distance of 0.25 times the individual pore size
so the stress gradients will interact (see Figure 5). The interaction
results in an increased stress concentration factor and, therefore,
fatigue notch factor.

The initiation life for the clusters consists of two stages:
individual pore cracking coalescence; and initiation of a crack around
the periphery of the cluster. Because the stress concentration factor is
higher for the material toward the center of the cluster due to interac-
tion, that material is more severely damaged compared to the material on
the periphery of the cluster. The cycles to coalescence is calculated
using the higher, interaction-influenced, fatigue notch factor. Meanwhile
the periphery material has accumulated a lesser amount of fatigue damage
although not enough to have initiated cracking. Using the Palmgren-Miner
linear damage rule,

N
N

at stress level x)

= 1 at failure (20)
failure at stress level x)
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where N denotes cycles, the outer material has been damaged an amount

N(coa]escence)
NZ%ai]ure a periphery stress level)

Before initiating a fatigue crack, the outer material must satisfy Miner's
criteria (Equation 20). After the inner region of the pores coalesce,
the load path around the cluster will change because load can no longer
be carried between the pore ligaments. Although the stress field around
the cluster will admittedly be very complex, it is assumed for our purposes
to approximate the stress field around an ellipsoid of comparablie dimen-
sions. Observing Figure 33, the ellipsoid will be an oblate spheroid,
haif as high as it is wide. In reference to Figure 3, it would be of the
shape a=b=1 and c=0.5. The remaining initiation Tife ¢f the cluster
(before a crack begins growing radially) at this new higher stress
concentration level is calculated from Equation 20. The total initiation
life is taken as the cycles to cause coalescence and the cycles remaining
before the periphery initiates a crack. The crack growth stress intensity
solution is shown in Figure 34. Note the high initial stress intensity
factor. This is due to the high stresses resulting from the assumed
ellipsoid shape of the coalesced cavity. The stress intensity factor
decays rapidly and the solution becomes dominated by the Mt factor. This
is the same as the single pore Mt solution, Equation 16, because both are
circular cracks.

The fatigue 1ife predictions for the ciuster geometry are
presented in Tables 11 and 12 and as S-N curves in Figures 35-38.

8. VARIABLE AMPLITUDE LOADING

8.1. SL-7 Containership Instrumentation Program

The SL-7 instrumentation program performed by the U.S. Navy and
the U.S. Coast Guard produced a vast amount of stress history data on
ocean going vessels. The seven year program (1972-1980) collected midship
bending stress data from eight SL-7 high speed container ships on both
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transatlantic and transpacific routes. A sample of this data was used to
generate a stress history to be used in the predictive model.

8.1.1. Data Characteristics

Stresses induced in a ship structural element have components

from a number of sources. These inc]ude[lzl

Tocal residual stress from
fabrication or welding, initial still water bending stress, varying mean
stress due to fuel burn off, the ships own wave system, diurnal thermal
stresses, low frequency wave-induced stress, and high frequency wave
induced stress. Of these only the wave induced stresses, both low and
high frequency will be used in constructing a stress history for the
model. The other sources will be considered as quasi-static, contributing
to the instantaneous mean stress rather being than a source of cyclic
loading.

High frequency wave induced stresses are caused by dynamic wave
loading against the ship structure. These can consist of bottom slamming,
shipping of water on deck, and flare impact. Dynamic loads produce
whipping and springing elastic motions of the hull, typically at higher
than the frequency of wave encounter. Low frequency wave-induced stresses
occur at the same frequency as wave encounter. These. are caused by the
wave forces on the hull. The Tevel of stress is directly related (although
not directly proportional to) the significant wave height of the en-
countered seaway.

The stresses recorded during the SL-7 instrumentation program are
the maximum peak stress and the maximum trough stress which occur during
a four hour recording interval. These maximum stresses do not necessarily
occur during the same cycle. In general, the maximum peak and trough
stress recorded will be produced by a dynamic, high frequency load.
Therefore, the majority of the reported data is high frequency data. A
limited amount of low frequency data, however, has been reported[lz]. A
representative history can be constructed from the available low and high
frequency data.

The low frequency are directly related to the significant wave
height encountered by the ship. The significant wave height is the
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average height of the highest one third portion of the waves. Figure 39
illustrates the relation between the observed wave height and the root
mean square (RMS) stress value. This data was collected on board the SL-
7 SEA-LAND McLEAN during 1974; the first date year of the data collection
program. 1ne frequency of occurrence for each wave height is reported
in[sz] and presented in Table 13. From the loading summary sheets
presented in Reference 12, the average number of wave cycles during a 20-
minute interval is 176 cycles, or 385,440 cycles per month at sea. Using
the cycle rate and the reported probability of occurrence for each wave
group, a low frequency loading spectrum can be calculated based on RMS
stresses.

The histogram[53] of maximum peak to trough stress recorded
during date year one aboard the SL-7 SEA-LAND McLEAN (port) is shown
Figure 40. Recall that each reported cycle is the maximum value, peak
and trough, recorded during a 4-hour interval. The average rate of
occurrence for high frequency or burst data is reported in Reference 12
as 18 bursts per 20-minute interval. This converts to 216 bursts for
every one burst recorded. In constructing the high frequency portion of
the loading spectrum, the conservative assumption will be made that 216
bursts occurred at the same value as the reported maximum. The number of
cycles from the high and low frequency loadings are then combined on a
per month basis &s shown in Table 14. Any overlap of the high and low
frequencies were assumed to be additive, i.e., an element of material

will be damaged equally by a dynamic load and a low frequency load of
equal magnitude.

8.2. Fatique Predictions

Fatigue predictions were made using the same material properties
and pore geometries as in the constant ampiitude program. Reference 12
reported an average mean stress of 6.5 ksi. In service, the mean stress
actually varies as fuel is spent and from ballast changes. Predictions
were made at mean stress biases of 6.5 and 0. The stress history was
scaled from 1 to 1.75 to provide a wide range of predicted service lives.
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TABLE 13. AVERAGE RMS STRESS BASED ON PROBAEILITY OF
OCCURRENCE FOR EACH WAVE GROUP

Average

RMS

Wave Probability of Occurrence Stress
Group of Wave Group ksi
I 0.6294 2.037
I1 0.3133 4.320
ITI 0.039 6.325
Iv 0.0167 7.249
v 0.0012 11.093
VI 0.0004 10.694
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TABLE 14. VARIABLE AMPLITUDE LOADING
SL-7 McLEAN
YEAR ONE DATA
ATLANTIC ROUTE

Stress Range (ksi) Cycles/Month Relative Frequency

2 261604 0.626
4.3 120758 0.289
6 23024 0.055
7.2 6437 0.015
10.2 3208 0.007
14 1296 0.003
18 864 0.002
22 432 0.001
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The results are reported as blocks with each block representing 1 month
of service at sea.

Nc attempt was made to employ a crack growth retardation model
because the reported stress data consisted of either maximums recorded
over a long time period (high frequency) or an averaged stress (low
frequency). As such, no effect of the loading sequence can be accounted
for.

8.2.1. Results

The results of the variable amplitude fatigue life predictions
are presented in Tables 15-22 and Figures 41-46. In general, the results
for the history without being scaled (scale = 1) represent lives many
times longer than any design lives, some on the order of thousands of
years. For the uniform porosity case where the smallest pores were
considered, some cracks were predicted to arrest after growing outside of
the pore stress field. As the scale was increased, lives on the order of
tens or hundreds of years were predicted.

9. PARAMETRIC DISCUSSION

The model used to predict the fatigue life of weldments contain-
ing porosity has been formulated to account for parameters which have
been demonstrated to affect fatigue life. Some aspects of the model
have been included based upon findings in the literature search dealing
specifically with porosity, such as the need for pore interaction in pore
clusters. The majority of the model's features are based upon historical
precedent of linear elastic fracture mechanics and life predictions in
notched specimens. In this section, the model's dependence upon the
various parameters is examined. Referring to Table 3, the following
parameters were varied in this study: thickness, residual stress, stress
ratio, pore size, and porosity type. The features of the model which are
influenced by these parameters will be highlighted with examples.
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FIGURE 41. ENDURANCE CURVES FOR SINGLE PORES IN A 0.5-INCH THICK PLATE FOR
SL-7 VARIABLE AMPLITUDE HISTORY CURVES CONNECTED BY CIRCLES
REPRESENT A MEAN STRESS BIAS OF ZERO
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FIGURE 42. ENDURANCE CURVES FOR SINGLE PORES IN A 1.0 INCH THICK PLATE FOR
SL-7 VARIABLE AMPLITUDE HISTORY. CURVES CONNECTED BY CIRCLES
REPRESENT A MEAN STRESS BIAS OF ZERO
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ENDURANCE CURVES FOR CO-LINEAR POROSITY IN A 0.5-INCH THICK
PLATE FOR SL-7 VARIABLE AMPLITUDE HISTORY, CURVES CONNECTED BY
CIRCLES REPRESENT A MEAN STRESS BIAS OF ZERO
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ENDURANCE CURVES FOR CO-LINEAR POROSITY IN A 1.0-INCH THICK
PLATE FOR SL-7 VARIABLE AMPLITUDE HISTORY, CURVES CONNECTED BY
CIRCLES REPRESENT A MEAN STRESS BIAS OF ZERO
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FIGURE 45. ENDURANCE CURVES FOR CLUSTER POROSITY IN A 0.5-INCH THICK PLATE
FOR SL-7 VARIABLE AMPLITUDE HISTORY, CURVES CONNECTED BY
CIRCLES REPRESENT A MEAN STRESS BIAS OF ZERO
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FIGURE 46. ENDURANCE CURVES FOR CLUSTER PQROSITY IN A 1.0-INCH THICK PLATE

FOR SL-7 VARIABLE AMPLITUDE HISTORY, CURVES CONNECTED BY
CIRCLES REPRESENT A MEAN STRESS BIAS OF ZERO
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9.1. Thickness

Two plate thicknesses were investigated in this study. It is
important to note that since a specific width was not specified, the
width of the plate is assumed to many times that of the plate thickness.
The infinite width assumption means that the size of the porosity and
subsequent crack are small in comparison to the plate and therefore the
reduction in cross sectional area does not affect the nominal stress.

The thickness of the plate, therefore, has no affect on the initiation
life of the crack, all other parameters being equal. The difference in
life between plate thicknesses is due to the propagation life. For equal
pore sizes, it will simply take longer for a crack to grow toward the
surface in a thicker plate. There is also a longer region where the
stress intensity is not increased by the pore stress gradient or the back
wall effect.

The fatigue life predictions proved to be relatively insensitive
to the plate thickness. The larger thicknesses resulted in only slightly
longer lives. This is due to the fact that 1ife predictions are not
greatly dependent upon the final crack length at failure (i.e., failure
criterion and back surface effects). When the crack becomes large in
size, the increased stress intensity drives the crack growth at an
increasingly higher rate until failure occurs. Conversely, life predic-
tions are very sensitive to initial crack lengths. See the initial crack
length discussion in Section 7.1.

9.2. Residual Stress

As was noted in the literature survey, local residual stresses
at the surface of pores is not reported. Masubuchi[zz] indicated that
tensile residual stresses as high as the yield strength of the base metal
was measured near the centerline in butt welds. Two residual stress
levels were used in the present study: the stress relieved condition
(residual stress equals zero) and a residual stress equivalent to the
yield stress in EH36 (51 ksi). The effect of residual stress is only
accounted for in the initiation life calculations. Since the residual
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stress field is thought to vary throughout the weld, accounting for the
changing stress field in crack growth calculations would prove to be very
complex. Therefore, the residual stress is taken as zero for all the
propagation calculations.

For the initiation life calculations, a residual stress dictates
the starting point for the loading. Figure 47 from Reference 10 il-
lustrates the effect of the residual stress upon the stress-strain response
of the material near the notch root of a weldment with reinforcement. An
analogy can be drawn between the notch root material and the material
near the surface of a pore since both act as geometrical stress concentra-
tions or notches. The plot shows the stress-strain response for three
materials; one strong, one tough, and one ductile; and the effect the
residual stress, T has on the set-up cycle. The result is a higher
local mean stress than would be realized in the stress-free condition.
The increase in mean stress is detrimental to fatigue life (see Section 9.3
Stress Ratio). Figure 48 shows the influence of residual stress on the
fatigue life for a single pore as predicted by the model. Note the
increase in life as residual stress is decreased.

9.3. Stress Ratio

The stress ratio, defined as

R = Smin / Smax !

is incorporated into the model for both the initiation and propagation
calculations. The stress ratio is directly related to the mean stress,

Smean' by

S - Smax (1 + R) ‘ (20)

As the stress ratio increases, the tensile mean stress also increases. A
tensile mean stress is generally observed to be detrimental for fatigue
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life, provided that the strains are not great enough to cause complete
mean stress relaxation. It can be seen from Equation 9,

Ae ' oc- O
7 TN s ("fz‘ln‘) (2h)°

that a tensile mean stress decreases the effective fatigue strength
coefficient which is a measure of high cycle fatigue resistance. The
strain-life equation is used to predict the initiation life at the pore
surface, so a tensile mean stress will predict lesser initiation lives
than zero or compressive mean stresses.

A high tensile mean stress is also found to increase crack growth
rates. The crack growth rate relation,

da A AK™
dN (1-R)

was developed to account for the higher observed crack growth rates at
higher stress ratios (and therefore higher mean stresses). Because both
Equations 9 and 10 are used in the predictions, the trend on all of the
S-N plots show a decreasing fatigue resistance with increased stress
ratio.

The S-N plots show that none of the R = 0.5 predictions result
in Tow lives (< 105). This seems to contradict the assertion that the high
stress ratio loading is the most damaging. Actually this is the result
of the method of choosing the stress levels for the predictions. Since
the maximum stress for the predictions are chosen as 0.8, 0.6, 0.4, and
0.2 times the yield stress of the material, the stress ranges for the R =
0.5 are smaller than the other stress ratios. Stress range is the most
influential parameter in the life prediction model. The small stress
ranges in the R = 0.5 predictions therefore result in long lives.
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9.4. Pore Size

The influence of pore size affects both the crack initiation and
propagation estimates. The fatigue notch factor, Kf, was developed to
account for the observation that smaller notches were found to be less
detrimental in fatigue than larger notches of similar geometry. The
relation used in the model to account for this phenomenon (Equation 7),

K, -1
Kf =1+ I + a/r

was introduced by Peterson. It models the *endency of larger pores to
have lesser initiation lives.

The propagation lives are also affected by the pore size. The
effective flaw size, once the crack initiates or sharpens, is defined as
the sum of the pore radius and the emerging crack. The larger the pore
size, therefore, the larger the initial crack size and shorter growth
period required to reach the surface. The effect of decreasing pore size
on fatigue life is noted on all of the S-N plots.

g.5. Porosity Type

The effect of the type of porosity on fatigue life as predicted
by the model can be inferred somewhat from Figure 49. The plot shows the
stress ranges at total fatigue lives, Nt of 10,000 for the four porosity
types. This plot illustrates that the geometry or porosity type influences
fatigue. In view of the assumptions made for each of the pore geometries,
the uniform porosity geometry would be expected to have the greatest
fatigue resistance, and the cluster geometry the least for equal pore
sizes. For the larger pore sizes, the single pores would be expected to
have only slightly more fatigue resistance than a co-linear arrangement
of non-interacting pores of equal size. The infinite width assumption,
where area percent porosity is not accounted for, is important to consider
when making comparisons between the porosity types. For instance, the
reduction in cross sectional area for the co-linear pores would result in

86

25—~




100
Res!ldual Strese—=5! ks
Thicokrese=0.85 |mah
o
o
T \\bUnlform
+ 80}
=
o
. 7or
‘m
X
- m"'
0]
§
@ \\\ *
2 "
w0 40+ Clueter A Co~-LImear
30 1 1 1 1

0.00 0.05 g.10 0.15 0.20 0.2
Pore Size. Inch

FIGURE 49. PLOT OF STRESS RANGE VS. PORE SIZE FOR THE FOUR TYPES OF
POROSITY CONSIDERED IN THIS STUDY AT N; = 10,000

87




a higher nominal stress, and the single and co-linear curves would be
spread farther apart. If trends observed in this figure were extrapolated
over the range of pore sizes, it is reasonable to assume that the single
pore would show the greatest fatigue resistance, followed by the co-
linear porosity, the uniform porosity, and the cluster porosity.

9.6. Relation to the Rules for Nondestructive
Inspection of Hull Welds

The pore sizes chosen for the parametric study were based upon
the Rules for Nondestructive Inspection of Hull Welds, 1986, prepared by
the American Bureau of Shipping[54]. For uniform porosity, called "fine
porosity" in the code, pore sizes less than 0.015 inch in diameter are
not considered to be detrimental. This 0.015 inch pore was the smallest
size examined in this study. For all the uniform porosity cases, the
maximum allowed area percent porosity, 1.5 percent, was assumed. This
pore size was generally found to have lives greater than 108 except at
the highest stresses. The lowest predicted life for this pore size was
320,921 for fully reversed loading at a stress range of 81.6 ksi. Larger
pore sizes were predicted to have decreasing fatigue resistance as seen
in the S-N plots. These predictions indicate that the 0.015 inch pore
size is a conservative value from a fatigue standpoint, for the minimum
pore to be considered in design.

The Targest isolated or single pore allowed in the code is 0.25
times the thickness of the plate, or 0.1875 inch, whichever is less. For
the 0.5 inch-thick plate, the largest allowed pore is 0.125 inch. For
the 1.0 inch-thick plate, the largest allowed pore is 0.1875 inch. Both
of these maximum allowed pore sizes were predicted to have fatigue lives
of about 105 for fully reversed loading at a stress range of 81.6 ksi,
the worst case considered. Larger pores are predicted to have correspond-
ingly lesser lives. The predictions indicate that these minimum values
are again somewhat conservative and would not prove to be fatigue critical,
at least for the material being considered.

The code also indicates that the concentration of porosity is not
to exceed that shown in the charts in Figures 11 and 12. The fatigue
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life predictions for clusters do indicate decreased fatigue life with
increased pore concentration because of interaction. However, as discussed
in Section 6.3, pores separated by a distance of two pore diameters do

not affect the others stress field. The charts shown in Figures 11 and

12 would disallow pore separated by any less than five pore diameters.
Again, this aspect of the code is conservative.

The assertion that the ABS code is conservative in its porosity
allowables from a fatigue standpoint is not to be construed as an endorse-
ment for its abandonment of even amendment. The presence of porosity,
especially cluster porosity, in weld metal suggests improper welding
practice and often masks other irregularities such as material degradation.

10. SUMMARY

The aim of this study was to examine the effect of porosity upon
the structural integrity of marine weldments. The parameters which
influence the fatigue life of weldments with porosity were found from
literature related specifically to porosity as well as traditional linear
elastic fracture mechanics and low cycle fatigue concepts. Using this
data, a model was developed to predict the fatigue lives of weldments
with porosity and with reinforcement removed. Specific analysis routines
were developed for Tife prediction of single pores, uniform porosity, co-
Tinear porosity, and cluster porosity. The model was used to predict the
lives of a limited number of actual fatigue tests of welds containing
severe clusters of porosity. The predictions agreed with the test results
nearly within a factor of two. The model was used to examine the depend-
ence of fatigue life on a number of parameters found to be influential.

A variable amplitude loading history was developed using SL-7 stress
history data. This history was used to generate variable amplitude 1ife
predictions for the four types of porosity being considered.
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(1)

(2)

(3)

(4)

(5)

11. CONCLUSIONS

Porosity is not fatigue critical in butt weldments which have
reinforcement intact. The stress concentration at the toe of the
reinforcement is much more severe than internal porosity so fatigue
cracks will initiate at the toe rather than a pore.

For butt welds with reinforcement removed, the following parameters
have been found to influence fatigue life: material, thickness,
residual stress, stress ratio, stress range, pore size and type of
porosity.

In view of the assumptions made regarding pore geometry, for equal
pore sizes, the single pore would be leasi detrimental in fatigue
followed by co-linear porosity, and uniform porosity. Cluster
porosity is predicted to be most detrimental.

For the SL-7 variable amplitude stress history, all pore geometries
were predicted to last indefinitely. For members subjected to
stresses 1.75 times that of the base history, lives on the order of
tens of years were predicted.

In relation to the findings of this study, the Nondestructive
Inspection of Hull Welds, 1986, prepared by the American Bureau of
Shipping, was found to be conservative from a fatigue standpoint.
However, since the presence of porosity suggests improper welding
procedure, other problems may with the weld may be present. The
finding that the code is conservative from a fatigue standpoint is
not sufficient reason for amendment of the porosity allowables.

12. RECOMMENDATIONS FOR FUTURE WORK

To further substantiate the methodology presentated in this

report, there is a need for more fatigue test data of weldment porosity.
The authors were able to uncover only eight fatique tests with sufficient
documentation to which to apply the model. This sample is far from being
statistically significant. It is recommended that a laboratory program
be initiated investigate the models sensitivity to its various parameters.
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A test program including a number of different ship steels and weld
metals would prove insightful.

A method for predicting the three dimensional pore geomerty
would greatly improve the usefulness of the proposed methodology. These
Tife estimates were made with fracture surfaces showing the positional
relationship of the pores. It would presently be difficult to determine
the geometry from radiographs to predict fatigue lives of components prior
to failure.

The problem of cavity interaction is not covered in any great
depth in the literature. Interaction is a complex stress analysis problem
perhaps best approached using photoelastic techniques. The availability

of solutions to this problem would enhance the physical soundness of the
methodology.
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APPENDIX

Step-by-Step Example of the Predictive Model

Single Pore

Parameters:

Stress range: 61.2 ksi
Stress ratio: -1

Residual stress: 51 ksi

Pore diameter: 0.1875 inch
Pore Kt: 2.054

Weld thickness: 1.0 inch

Step 1. Notch analysis

The notch analysis determines the strains expected at the
material adjacent to the pore surface. As discussed in Section 5.1.2,
the fatigue notch factor is often used in place of the stress
concentration factor when analysing fatigue loading. Solving for the
material constant 'a' in Equation (8),

1.8
a =(3—g9) x 1073 in. (8)

u

using the ultimate strength of the ABS EH36 steel in Table 4 as 75 ksi, a
= 0.01 inch. Using Equation (7),

Kt -1
Kf =1+ ( + a r) , (7

and the values above, the fatigue notch factor, Kf, is 1.95.

To determine the maximum and minimum strains at the pore surface
due to cyclic loading, Nueber's rule is used. Because the loading is
cyclic, the cyclic strength coefficient, K', and the cyclic strain
hardening exponent, n', can be used in the final form of Equation (3),
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The residual stress of 51 ksi is added to the left hand term giving,

(ASKt+Ur)2 Ao po /M
s e )
E E K

Solving for Ao, the result is Ao = 56.51 ksi and A€ = 0.00716. The
reversal switches the coordinate axes of stress and strain, and the
equation is solved again, this time without the added residual stress.
This and all subsequent reversals use a value of the cyclic strength
coefficient, K;ev, equal to 2(1'"I)*K'. This is necessary because K' is
used to define the cyclic stress-strain curve which is constructed of the
tensile hysteresis loop tips. The actual material stress-strain response
during revesals follows a larger path when going into compression. The
results for the reversal local stress range and strain range are 89.08
ksi and 0.00534. The minimum local stress is therefore -32.56 ksi and
the minimum local strain is 0.0018. The local mean stress, Ot is 11.97
ksi. Figure Al shows the hysteresis loop for the material at the pore
surface for this loading case. Note that the residual stress state
initially includes a large plastic strain value. In reality, the residual
stress is generally below yield because at this stage the material stress-
strain response follows the monotonic stress-strain curve. The fatigue
life prediction model makes the assumption that the notch material assumes
cyclic behavior relatively early in the loading history, so it is used
throughout the analysis. The presence of the initial plastic strain does
not affect the numerical computations in estimating the crack initiation
life.
Step 2. Estimate cycles to initiation using low-cycle fatigue properties.
Equation (9), the Coffin-Manson equation with Morrow's mean stress
correction,
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is used to solve for the estimated cycles to failure, Nf. This again is
an iterative procedure. For this example, the cycles to crack initation
is 7971 cycles. The resulting Nf is actually the number of cycles
required to initiate a fatigue crack at the pore surface since the
calculated strains are local to this region. The remaining weldment is
still intact at this cycle count. The rest of the analysis estimates the
number of cycles to failure by crack propagation through the weldment.

Step 3. Estimate cycles required to propagate crack to failure.

The crack propagation model is outlined in section 5.2. The
initial crack size assumption used throughout this study was 0.05 times
the pore diameter. The initial crack size for this case is 0.0094 inch.

To determine the stress intensity range for a given crack size and loading,
the geometry correction factor from Equation (13)
i Mg M M

t Tk

Y (13)

%

is calculated. When the crack is in the region of the stress
concentration due to the pore, the stress intensity range solution is
dominated by the stress gradient term, Mk' Calculating the Mk term

requires a numerical procedure[47]

taking into account the stress gradient
away from the pore. The Mk term is calculated by superposition of the

notch stress gradient upon the crack. The expression is

n
2 X o, - b. b.

M = — b arcsin 1+l arcsin ——

k x 1

1 = a a

where bi is the position b along the crack, % is the stress at position
bi due to the notch (assuming no crack), and a is the crack length. In
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this example, at the initial crack length of 0.0094 inch, the value of My
is 2.11. The finite thickness correction factor, Mt is negligible (equal
to one) at this small crack length. Also, the front surface term, Ms' is
equal to unity for an internal crack. The crack shape factor, 00, for a
circular crack is 1.57. The geometry correction factor, Y, is therefore
1.34 at the initial crack length. This value decreases rapidly with
increasing crack length as shown in Figure 16. As the crack grows near
to the surface, the value of Y begins to increase. For comparison, apply
Equation 16 at a = t/2, the position of the crack front just before
breaking the surface. M, is 1.4, and My becomes near unity. The final
value of Y is therefore 0.89.

Estimating the number of cycles to failure by crack propagation
is accomplished by calculating the stress intensity factor range, AK, at
every cycle and incrementing the crack length according to the material
crack growth rate. The estimated propagation cycles to failure for this
example is 26722 cycles. The total estimated fatigue life is therefore
34693 cycles.
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